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The stability of the steady flows of an ideal incompressible fluid of uniform density in a magnetic field is investigated. Only those 
MHD flows are considered which possess one of the types of symmetry (translational, axial, rotational or helical). The sufficient 
conditions for non-linear stability of the flows in question with respect to perturbations of this symmetry are obtained. These 
conditions are proved by the method of coupling the integrals of motion [1, 2] in the form [3-8], based on constructing functionals 
having absolute minima on specified steady solutions. Each of the functionals constructed is the sum of the kinetic energy, the 
integral of an arbitrary function of the Lagrangian coordinate and another integral, specific for the flows being investigated. The 
use of Lagrangian coontinate fields leads to a whole family of new definitions of stability. According to these definitions, deviations 
of the pertu_bed flows ~rom the unpertmbed ones are measured by the integrals of the squares of the velocity-field and Lagrangian- 
coordinate perturbatio:as. The stability conditions obtained are extended to existing results [5-7, 9] on new types of flows. These 
conditions are of an a priori nature since the corresponding theorems of existence of the solutions are not proved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Three -d imens iona l  mot ions  o f  an ideal  incompress ib le  fluid containing a magne t i c  field h = (hi, h2, 
h3) in the  region I: with a fixed solid ideally conduct ing boundary  0% are  considered.  T h e  equat ions  
describing such mot ions  will be  t aken  in the  fo rm [10] 

u i + ( u V ) u = _ V p _ ( 4 n ) - l [ h r o t h ] ,  h i = r o t [ u h ] ,  d i v h = 0 ,  d i v u = 0  (1.1) 

We will a s sume  tha t  the  following condi t ions  are satisfied on the  bounda ry  Ox 

u n = 0 ,  h n = 0  (1.2) 

where  n = (nl, n2., n3) is the uni t  no rma l  to 0x. T h e  initial data  for  the  sys tem o f  equat ions  (1.1) are  
specified in the  folrm 

u(x, 0) = u0(x), h(x, 0) = h0(x) (1.3) 

so tha t  the  functiolas u0(x) and  h0(x) are solenoidal  everywhere  in the region and satisfy condit ions (1.2) 
on its bounda ry  ~:.  All the  funct ions used  toge the r  with their  derivatives, which occur  in the  equa t ion  
of  m o t ion  (1.1), are  assumed  to be  cont inuous.  

In  the  last sections we  will investigate the  stability of  some special exact  s teady solutions of  p rob l em 
(1.1)--(1.3) with respec t  to special  classes o f  per turbat ions .  

2. F L O W S  W I T H  H E L I C A L  S Y M M E T R Y  

We will investigate motions,  all the fields in which depend  on r, t t  = a 9  - b z  a n d  t (here  a is any integer  
and  b is any real  number )  in a cylindrical sys tem of  coordinates  r, 9, z. We will a s sume  that  the magnet ic  
field h has only arL angular  c o m p o n e n t  h2 and an axial c o m p o n e n t  h3, connec ted  with one  ano the r  by 
the re la t ion 

a h  2 - b r h  3 = 0 (2.1) 
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Using the notation [6, 7] 

~,=a~)-brw, ~=aw+bra), R=a2+b2r  2, K=2abR -2 

p .=p+(81:)- , (h~ +h2), p,=~2,  g,=b2rR-2 

P2=(4/~) -I(h2/r)2, g 2 = - r ,  p3=h3 

and condition (2.1), the equations of motion (1.1) can be converted to the form 

Du - K~ .  - r -1 ( a~.) 2 R -2 = -p~ + Plgl + P2g2 (2.2) 

D(rLR -I ) + K~ru = -Plx, DPl = O, DO2 = 0, Dp3 = 0 

Ur+Ulr+r-I~.~=O, D = O / O t + u O l O r + r - I ~ l O p .  

We will introduce the additional scalar function q(r, Ix, t), the values of which remain the same in 
each fluid particle [8] 

Dq = 0 (2.3) 

Since the motions being investigated occur in a fixed region, its boundaries must possess the required 
symmetry, i.e. they are specified by functions of two variables (a is the number of the boundary 
component) 

s~(r, Ix) = 0 (2.4) 

Boundary conditions (1.2) then take the form 

u(sa)r +(~. / r)(Sa)" =0  (2.5) 

We will assume that the region x of the flow is a doubly connected region (a = 1, 2), and its boundary 
/~ (2.4) consists of two components: internal and external. 

The initial data (1.3) for Eqs (2.2) and (2.3) will be written as follows: 

u(r,l~,O ) = uo(r,l~ ), ~,(r,~,O) = ~,o(r,p.) (2.6) 

pl(r ,~,0) = plo(r, ix), p2 (r,p-,0) = P20(r,l~) 

p3(r, la,0) = P30(r,~), q(r,p.,O) = qo(r,p.) 

It should be noted that relation (2.1) is a consequence of the second equation of system (1.1). In fact, 
we can obtain the following relation from this equation by simple reduction 

D((a I r)h 2 - bh3) = 0 

which shows that if we choose the initial components of the magnetic field h2o(r, !1) and h3o(r, IX), which 
satisfy condition (2.1), this condition will hold not only when t = 0 but also at any subsequent instant 
of time. 

The follOwing energy integral holds for problem (2.1)-(2.6). 

E = T + H , + H 2 = c o n s t ,  T = I !  (~,2R-'+uZ)dx, d~=rdrdl~ (2.7) 

Hi =~ PlUI d'c, UI =Ul(r)=(2~R) ~1 +el ,  H2 =I P2U2 d't', U2 =U2(r)  = r 2 / 2 + C 2  
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where C1 and C2 are constants representing the values of the functions U 1 and/-/2 either on the internal 
or external part of the boundary 3x (2.4). Another integral of this problem is defined in terms of the 
arbitrary function ~(q) 

I = ~ O(q)dx = const (2.8) 

Problem (2.1)-(2.6) has exact steady solutions 

~.=/f=0; pi=p°(r) ,  i=1,2,3; q=Q(r)  (2.9) 

in which p°(r) and Q(r) are arbitrary functions of argument r. IfdQ/dr # 0 in'c [11], we have from relations 
(2.7) and (2.9) 

pO = pO(Q), U, = UI(Q), U 2 = U2(Q) (2.10) 

Q~(Q-,Q+),  Q-=minQ(r) ,  Q+=maxQ0) inz  

The exact unsteady solutions of problem (2.1)-(2.6) can be written in the form 

u=u(r ,  lx, t), )~= ~.(r, kt, t), pi =p°(Q)+oi(r ,  kt, t) 

q = Q(r)+K(r, kt, t) 

where u, k, oi, ~: are regarded as perturbations of solution (2.9) and (2.10). We will assume that, when 
the initial data (2.6.) are appropriately specified, such solutions exist and are continuous, and the 
derivatives in the equations of motion (2.2) and (2.3) are also continuous. Using (2.10) we can construct 
the additional function of two variables V = V(X, Y) 

V=p°'(X)[U,(Y)-Ui(X)]+p°'(X)[U2(Y)-U2(X)], X, Y E ( Q - , Q  +) (2.11) 

Here and below the prime denotes a derivative with respect to the argument. 

Assertion 1. Suppose the following inequality is satisfied over the whole region "c 

0<~ c~ <~3V/3X<~ c~- <+oo (2.12) 

with regard to the constants c7 and c'~. Then, at any instant of time, the perturbations u, ~. and K: can 
be estimated in terms of their initial values u., ~. and k. as follows: 

s (;,,,2R -, + (;',.W' + (2.13) 

This can be proved by the method of coupling the integrals of motion (2.7) and (2.8) [1--8]. 
Suppose the initial fields pl0(r, IX), P20(r, IX) and q0(r, IX) (2.6) can be obtained from the steady 

distributions p°(r), p°2(r) and Q(r) given by (2.9) solely by permutations of the particles of the incompres- 
sible fluid. The quantities Pl, P2 and q during these permutations are constant in each fluid particle and 
are equal to their values assumed in the solutions (2.9) 

0 
pl=pt°(q), p2=P2(q), qE 

piE(pO-,pO+), pO-=minpO(r), po+ = max p0 (r) in x (2.14) 

p2E(p°-,p°÷), p° - :minp° ( r ) ,  p°+:maxp°( r ) inx  

i.e. the relations bet~,een Pl, P2 and q, and the ranges within which these quantities are defined are the 
same as in (2.1). Here we are essentially dealing with the "equivorticity" condition [12]. Clearly, if 
relations (2.14) holdL at the initial instant they will remain the same at any subsequent instant. 
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From integrals (2.7) and (2.8) we set up the conserving functional 

1 S { ~'2R-I + u2 + 2Pi (q)Ul (a)  + 292 (q)U2 (a)  + 2~(q)}d'c F = F(u, L, q) = .~ 
"C 

which we will represent in the form of the sum of three terms 

F = F(u, ~., q) = F(O, O, Q) + F I + F 2 

Fl= s {lefq(Q,Q)}dx, F2=--ls {~,2R-i+u2+2fl(q,Q)}dx 
x 2x 

fi (q, Q) = f (q ,  Q) - f (Q,  Q) - % (Q, Q) 
(2.15) 

bf(q,Q) 
f (q ,Q)=~(q)+Ui(Q)pi (q)+U2(Q)p2(q) ,  fq(q,Q)= Oq 

Using the fact that the function O(q) is arbitrary, we can choose it so thatfq(Q, Q) = 0, namely 

~ '  (Q) = -u j  (Q)p °t ' (Q ) - u 2 (Q)p°2' (Q) (2.16) 

It then follows from (2.15) that Fa = 0, while the functional Fz is independent of time. By virtue of 
(2.11) and (2.16) we obtain for the function V 

V(q, Q)=fq(q, Q) (2.17) 

Relations (2.11) and (2.17) give the inequalities 

0 <~ c I ~< f<lq (q' Q) ~< c~ < + ~  (2.18) 

which denote thatf is  convex in the interval (Q-, Q+), i.e. over the whole range of  values of the argument 
q. Taking the formula for the residual term in Lagrangian form [13], the function fl  given by (2.15) can 
be converted to the form 

fl(q,Q)=ll2j~/,t(O.,Q)le 2, Q.=Q+Ote,  0 < O < 1 ,  te=q:-Q 

We can therefore rewrite (2.18) as follows: 

cile 2 / 2 ~< fl (q, Q) ~< c~ le2 / 2 (2.19) 

whence, since the functional F2 given by (2.15) is constant in time, we obtain the estimate (2.13). 
Suppose now that the initial field of the Lagrangian coordinate qo(r, IX) is arbitrary, while the initial 

fields Pa0(r, IX), P20(r, IX) are ealeulated from it using (2.14). In this case it becomes necessary to consider 
values of  q which lie outside the interval (Q-, Q*). To do this, the definition of the function f(q, Q) 
given by (2.15) is supplemented over the whole q-axis while preserving inequalities (2.19). Using the 
three functions O(q), p°x(q)and p~(q), which are arbitrary outside (Q-, Q+) this extension can clearly 
be carried out by an infinite number of methods. The required estimate (2.13) again follows from (2.19), 
where - ** < q < + **, and the condition for F2 to be independent of time. Assertion 1 is proved. 

The problem of the non-linear stability of steady helical flows of an ideal incompressible fluid of uniform density 
when there is no magnetic field was considered previously in [6, 7]. The sufficient condition for the stability of  
these flows to finite perturbations of the same type of symmetry was obtained in the form 

0<~c3 <~gl/(l'O)r<-C~ < + "  (2.20) 

where c~ and ¢~ are constants. A comparison of (2.12) and (2.20) shows that the second of these is a special ease 
of the first if h = 0, q = Pl (2.2). 

Hence, for q ¢ Pl, h = 0 Assertion I leads to criteria of the stability of helical flows of an ideal fluid within the 
framework of new definitions which differ from that proposed in [6, 7]. In addition, when h ¢ 0, Assertion 1 must 
be treated as an extension of the result obtained in [6, 7] on MHD flow. 
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When a = 0 all the results obtained in this section can be transferred directly to rotationally symmetric 
motion. 

3. PLANE FLOWS 

We will investigate, in Cartesian coordinates x, y, z, motions, all the fields in which are independent 
of the z coordinate, where the velocity field u = u(x, y, t) = (u, ~, 0) while the magnetic field h = h(x, 
y, t) = (0, 0, h3). The governing equations of motion (1.1) then take the form 

D u = - p ; ,  D~=-p~ ,  Dh 3 =0, u~+%.=0  (3.1) 

D = b l 3t + ub l Ox + "ob l ~y 

wherep* = p + (8~)-1h~3 is the modified pressure. We will assume that the fluid moves within a fixed 
region x, the components of the boundary of which have the form of cylindrical surfaces with generatrices 
parallel to the z-axis and defined by the relations 

Sa (x, y) = 0, c~ = 1,2 ..... m (3.2) 

Here ct is the nnnlber of the components of the boundary of the region. In the x, y plane the region x 
of the flow is bomaded by the curves ~xa (3.2), so that the following relation holds for the boundary bx 

3x= U ~ a  (3 .3)  
Ct=l 

The non-flow boundary conditions (1.2) on ~x (3.3) give 

= 0  

The initial data (1..3) for Eqs (3.1) become 

u(x,y,O) = Uo(x,y ), D(x,y,O)= Do(x,y) 

h 3 (x, y, 0) = h30 (x, y) 

We will introduce the stream function ¥ and the vortex field to such that 

(3.4) 

(3.5) 

Oo~ = 0 (3.7) 

It follows from (3.1) and (3.7) that both the magnetic field and the vorticity are conserved in each 
fluid particle. CocLsequently, we can consider an arbitrary scalar field q(x,y, t) which is also transferred 
by each of the fluiLd particles when the fluid moves [8] 

Oq = 0 (3.8) 

In this connection we will investigate below problem (3.1)-(3.4), (3.7) in which the third of Eqs (3.1) 
is replaced by Eq. (3.8). Then the initial data (3.5) will be written in the form 

V(x,y,O) = ~o(x,y),  q(x,y,O) = qo(x,y) (3.9) 

The energy integral for problem (3.1)-(3.4), (3.7)-(3.9) then takes the following form 

2E= ~ (u 2 +v2)dx=const, dx=dxdy (3.10) 
,[ 

Eliminating the modified pressurep m the first two equations of system (3.1) using (3.6) we obtain 
the vortex transfer equation 

u = - V , . ,  'o = V~ ,  co = u~ - Uy = AW (3.6)  
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By virtue of (3.8) we have the integral of motion 

I = ~ O(q)dx = const (3.11) 

where O(q) is an arbitrary function of argument q. Moreover, the quantities 

F~= I (nVv)dl=const,  dl=(dx 2 -Fdy2) ~ (3.12) 
Oxtt 

which have the meaning of the circulations of the velocity over the contours of the boundary ~)xa, are 
conserved (dl is an element of length of the contour Oxa). 

We will assume that exact steady solutions of problem (3.1)-(3.4), (3.7)-(3.9) exist, namely 

~ = ~ ( x , y ) ,  to=f2(x,y), q=Q(x,y) (3.13) 

where the fields W, fl and Q satisfy the relations 

[W,I2] = 0, [~P,Q] = 0 (3.14) 

Equalities (3.14) correspond to the existence of the following functional relations 

f0(tP, g2)=0, f~(~P,a)=0, j ' 2 ( fLa )=0  

which, when VQ * 0 in the flow [11], are solved in the form 

W=W(Q), n=f2(Q) ,  Qe(Q-,Q+), (3.15) 

Q- =minQ(x,y), Q+ =maxQ(x,y)inx 

We will further investigate the unsteady solutions of problem (3.1)-(3.4), (3.7)-(3.9) 

= ~ ( Q )  + ~p(x, y, t) 

to=f~(Q)+t~(x,y,t), q=Q(x,y)+~c(x,y,t) 

(3.16) 

where the fields 9, o, ~: are regarded as perturbations of the solutions (3.13) and (3.15). We will assume 
that, when the initial data (3.9) is appropriately specified, solutions (3.16) exist, are continuous and their 
derivatives in (3.1)-(3.4) and (3.7)--(3.9) are also continuous. 

Suppose the fields to and q depend on one another in accordance with one of the following two laws. 
1. The fields q(x,y, 0) and to(a; y, 0) in (3.6) and (3.9) are obtained from a(x,y) and f~(x,y) (3.13) 

using one field of mutual displacements of the particles of the incompressible fluid. The quantities q 
and to in such displacements are constant in each fluid particle and equal to their values in the unperturb- 
ed flow (3.13). Then 

(o=Xq(q), q¢(Q-,Q+), toe(I2-,f~ +) 

~ -  = minf2(x,y), ~+ = max~(x,y)inx 

(3.17) 

It follows from (3.17) that the relation between q and to and the intervals in which these quantities 
are defined are the same as in (3.15). 

2. One of the fields to(x,y, 0) or q(x,y, 0) is assumed to be arbitrary, while the other is obtained from 
it using the relation to = f~(q) in (3.17). The function fl(q) when q ~ (Q-, Q÷) is taken from (3.15) and 
is extended in an arbitrary (fairly continuous) way outside this interval along the whole of the 
q-axis. Limitations on this arbitrariness will arise later. 

It is clear in both cases that the relation to = f~(q), which is satisfied at the initial instant of time, 
remains true at any subsequent instant. 

Condition 1 imposes a limitation on the initial vortex field, while condition 2 does not. Naturally 
condition 1 is a special case of condition 2. 
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Taking relations 
v = v ( x ,  

(3.15) into account we can construct an auxiliary function of two variables 

V =~ ' (X) [W(X) -W(Y)] ;  X, Y e ( Q - , Q  +) (3.18) 

Assertion 2. If the following inequality 

0 <~ c~ ~< 3V / OX ~< c~ < +oo (3.19) 

holds over the whole region x of the flow with constants c~ and c~, then at any instant the perturbations 
9, K can be estimated in terms of their initial values 9., K as follows: 

(3.20) 

Proof. We will assume that condition 1 (3.17) for there to be no Lagrangian perturbations of the field 
q (3.8) is satisfied. 

From integrals (3.10)-(3.12) of problem (3.1)-(3.4), (3.7fi-(3.9) we set up the conserving functional 
[5, 8, 9] 

R.(W,q)=~!I {(VW)2 + 2*(q)}dxdy. + ~t=, '~' baF~x = R(W,Q)+ R I + R 2 

/q!, = ~  (Oa+ba)  I nVqMI+~ fq(Q,Q)~zdxdy 
c~ ~ a  x 

---'I R2 2 

(3.21) 

)~(q,Q)= f ( q , Q ) -  f (Q,Q)-Kfq(Q,Q)  

f (q ,  Q) = ~p(q) - ~(Q)~(q) ,  fq (q, Q) = Of(q, Q) I Oq 

where ba are arbitrary constant quantities and ~F~ are the values of the steady stream function ~ (3.13) 
on the contours ~x~z (3.2). The arbitrary function ~(q) and the constants ba are chosen so that the 
following relations are satisfied 

O'(Q) = W(Q)~'(Q), b a = - W  a (3.22) 

after which, by vil~te of (3.21) it turns out that R1 = 0 while the functional R 2  is  independent of time. 
The function V, as can be seen from (3.18) and (3.22), satisfies the following relation 

V(q, Q) = jf~(q, Q) (3.23) 

Using (3.19) an (:3.23) we then obtain the inequalities 

+ ( 3 2 4 )  0<~ c~ <~ f, lq(q,Q) ~ c2 <+oo 

It follows from (3.24)that the functionfis convex over the whole range of variation of the argument 
q (3.17). Using the expression for the residual term in Lagrangian form [13], we can write the function 
f3 in (3.21) in the form 

1 A (q, Q) = "~ f,)~ (Q*, Q) K2, Q* = Q + OK (3.25) 

0<O<1 ,  K = q - Q  
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Rela t ions  (3.24) and (3.25) lead to the following double  inequality 

c~¢ 2 / 2 ~< A (q, Q) <~ c; K2 / 2 (3.26) 

f rom which, taking into account  the fact  that  R2 of  (3.21) is independen t  o f  t ime,  the limit (3.20) also 
follows. 

I f  condit ion 2 is satisfied, the  need  arises to consider  the values of  q outs ide the interval  (Q-, Q+).  
For  this the  funct ion f (q ,  Q)  in (3.21) is supp lemen ted  over  the whole  q-axis so that  the  truth o f  
inequali t ies (3.26) is preserved.  Using the two functions O(q) and f~(q), that  are  arbi t rary  outs ide (Q-, 
Q+),  it is obvious tha t  this extension can be carr ied out  in an infinite n u m b e r  o f  ways. As  a result ,  f rom 
(3.26), where  now --** < q < +o0, and the condit ions for  the functional  R2 to be  constant  in t ime, we 
again obtain  the requi red  limit (3.20). This proves  Asser t ion 2. 

In the problem of the non-linear stability of plane steady flows of an ideal fluid of uniform density in a magnetic 
field perpendicular to the plane of motion, the sufficient condition for such flows to be stable.to finite perturbations 
of the same symmetry was obtained in [9], which is identical with the result obtained earlier [5] and has the form 

O<~c~ <~c lWId~c '~  < +0o (3.27) 

where c~ and c~ are constants. Comparison of (3.27) and (3.19) shows that the first is a special case of the latter 
i fq -- to, defined in (3.6). 

Thus, Assertion 2 when q ~ to gives criteria for the stability of the flows of an ideal fluid considered within the 
framework of new definitions, different from that proposed in [5, 9]. 

4. E X A M P L E  

Consider the steady helical flows of an ideal incompressible fluid of uniform density in a magnetic field 

~Tr ) = O, ,0 al~ ~ r I~=c6r (4.1) 

where c5 and c6 are arbitrary constants, f fwe choose the coordinate r as Q, we obtain the following equations from 
the sufficient condition of non-linear stability (2.12) for the flows (4.1) 

, z,: {_po. <,.w,<,.)+ o °" ,.,, (,-)I} = o. = o 
" =  , 

In this case the limit of stability (2.13) takes the form 

s 
' I  ' I  

Note that the sufficient condition for non-linear stability (2.20) [6, 7] cannot be applied to the flows (4.1), since 
non-negntive constants c~ and c~, which would set an upper and lower limit, respectively, to the quantitygl/(p°), 
do not exist 

We wish to thank  B. A. Lugovtsov  and K. I. II ' in for  their  interest  and for  useful  discussions. 
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